
wactively
quations P
wer a conme values Letion poin - Wue of K :t and at amotil
the bulk mow didition, for $11 a$, and $11 b$

$C=-2$, corresponding to $K_{0}{ }^{\prime \prime}=-4.8 \times 10^{-12}$ $\mathrm{cm}^{2} /$ dyne. In spite of the impressive agreement, it should be mentioned that a phase transition at about 160 kb makes questionable any extrapolation from the low-pressure region into the high-pressure region.
The effect of varying m is shown in Figure s where we have plotted the calculated curves for aluminum oxide out to 5000 kb . Using values of m equal to 1,2 , and 3 , equation 9 is plotted for $C=-1$. In addition, we have plotted the curves for $m=4.2,5.2,6.2$, and $C=+1.0$. One can readily observe that the six curves are distinguishable only for extreme pressures. Also, as $C \rightarrow 0$ for given K_{0}^{\prime} and m, either $a \rightarrow \infty$ or $K_{0}{ }^{\prime}=m$, and in both cases the limiting expression for K / K_{0} becomes independent of m. We may therefore conclude that the value of m does not appreciably affect the volume calculation when $|C|$ is small.
As a final point of interest, Figure 9 compares typical results from equation 9 with re-
sults based on a quadratic approximation to the bulk modulus, given by

$$
\frac{K}{K_{0}}=1+K_{0}{ }^{\prime} P+\frac{1}{2} C P^{2}
$$

The extrapolation formula predicted by the quadratic approximation is obtained in a manner similar to that given in Appendix B for equation 7 . That is

$$
\left.\begin{array}{rl}
V & =\exp \left[-\int \frac{d P}{\frac{1}{2} C P^{2}+K_{0}^{\prime} P+1}\right] \\
& =\left\{\left[C P+K_{0}^{\prime}+(r)^{\prime \prime} / 2\left[K_{0}{ }^{\prime}-(r)^{1 / 2}\right]\right.\right. \tag{1}\\
{\left[C P+K_{0}^{\prime}-(r)^{1 / 2}\right]\left[K_{0}^{\prime}+(r)^{\prime 2}\right]}
\end{array}\right\}
$$

where $r=\left(K_{v}{ }^{\prime}\right)^{2}-2 C>0$. For $r=0$ an $r<0$ the volume equation becomes

$$
V=\exp \left(\frac{2}{C P+K_{0}{ }^{\prime}}-\frac{2}{K_{0}^{\prime}}\right)
$$

and

